Tcf/Lef repressors differentially regulate Shh-Gli target gene activation thresholds to generate progenitor patterning in the developing CNS.

نویسندگان

  • Hui Wang
  • Qiubo Lei
  • Tony Oosterveen
  • Johan Ericson
  • Michael P Matise
چکیده

During neural tube development, Shh signaling through Gli transcription factors is necessary to establish five distinct ventral progenitor domains that give rise to unique classes of neurons and glia that arise in specific positions along the dorsoventral axis. These cells are generated from progenitors that display distinct transcription factor gene expression profiles in specific domains in the ventricular zone. However, the molecular genetic mechanisms that control the differential spatiotemporal transcriptional responses of progenitor target genes to graded Shh-Gli signaling remain unclear. The current study demonstrates a role for Tcf/Lef repressor activity in this process. We show that Tcf3 and Tcf7L2 (Tcf4) are required for proper ventral patterning and function by independently regulating two Shh-Gli target genes, Nkx2.2 and Olig2, which are initially induced in a common pool of progenitors that ultimately segregate into unique territories giving rise to distinct progeny. Genetic and functional studies in vivo show that Tcf transcriptional repressors selectively elevate the strength and duration of Gli activity necessary to induce Nkx2.2, but have no effect on Olig2, and thereby contribute to the establishment of their distinct expression domains in cooperation with graded Shh signaling. Together, our data reveal a Shh-Gli-independent transcriptional input that is required to shape the precise spatial and temporal response to extracellular morphogen signaling information during lineage segregation in the CNS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wnt canonical pathway restricts graded Shh/Gli patterning activity through the regulation of Gli3 expression.

Dorsoventral patterning of the vertebrate nervous system is achieved by the combined activity of morphogenetic signals secreted from dorsal and ventral signalling centres. The Shh/Gli pathway plays a major role in patterning the ventral neural tube; however, the molecular mechanisms that limit target gene responses to specific progenitor domains remain unclear. Here, we show that Wnt1/Wnt3a, by...

متن کامل

Gli2 and Gli3 have redundant and context-dependent function in skeletal muscle formation.

The Gli family of zinc finger transcription factors are mediators of Shh signalling in vertebrates. In previous studies, we showed that Shh signalling, via an essential Gli-binding site in the Myf5 epaxial somite (ES) enhancer, is required for the specification of epaxial muscle progenitor cells. Shh signalling is also required for the normal mediolateral patterning of myogenic cells within the...

متن کامل

Wnt and Hedgehog Signaling Regulate the Differentiation of F9 Cells into Extraembryonic Endoderm

Mouse F9 cells differentiate into primitive extraembryonic endoderm (PrE) when treated with retinoic acid (RA), and this is accompanied by an up-regulation of Gata6. The role of the GATA6 network in PrE differentiation is known, and we have shown it directly activates Wnt6. Canonical Wnt/β-catenin signaling is required by F9 cells to differentiate to PrE, and this, like most developmental proce...

متن کامل

The Sonic hedgehog pathway independently controls the patterning, proliferation and survival of neuroepithelial cells by regulating Gli activity.

During CNS development, the proliferation of progenitors must be coordinated with the pattern of neuronal subtype generation. In the ventral neural tube, Sonic hedgehog acts as a long range morphogen to organise the pattern of cell differentiation by controlling the activity of Gli transcription factors. Here, we provide evidence that the same pathway also acts directly at long range to promote...

متن کامل

Progenitor cell proliferation in the retina is dependent on Notch-independent Sonic hedgehog/Hes1 activity

Sonic hedgehog (Shh) is an indispensable, extrinsic cue that regulates progenitor and stem cell behavior in the developing and adult mammalian central nervous system. Here, we investigate the link between the Shh signaling pathway and Hes1, a classical Notch target. We show that Shh-driven stabilization of Hes1 is independent of Notch signaling and requires the Shh effector Gli2. We identify Gl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 138 17  شماره 

صفحات  -

تاریخ انتشار 2011